Site-Specific Iron Siltronic Corporation

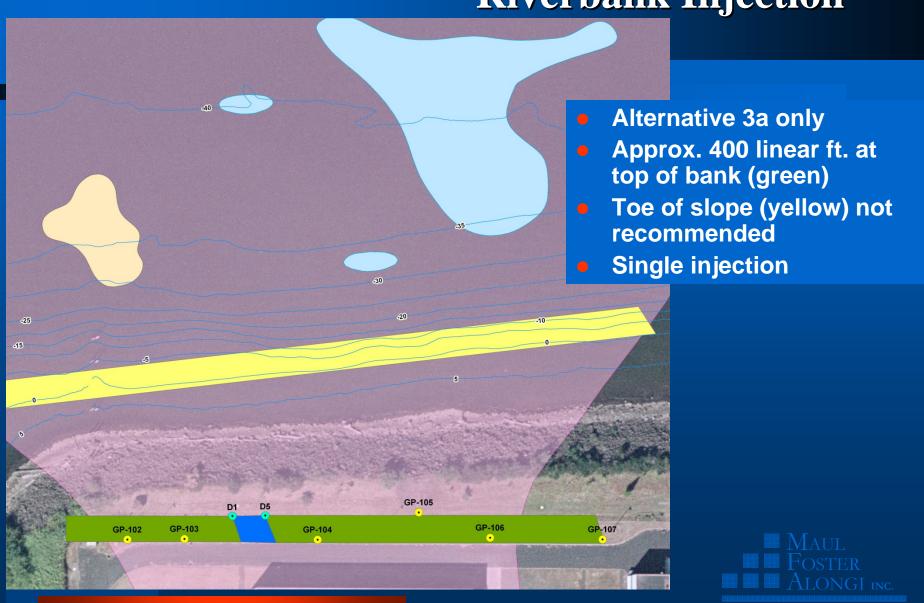
FFS Follow Up Meeting – DEQ NWR

May 27, 2008 Maul Foster & Alongi, Inc.

Topics

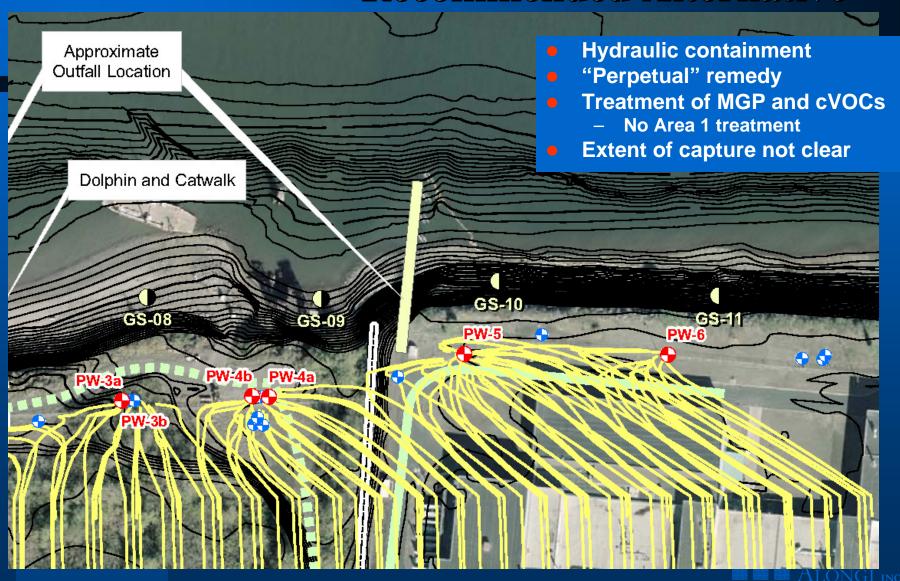
- Overview/FFS Alternatives Review
- Support for Recommended Alternative
 - Pilot Study Results
- DEQ Concerns
 - Iron from EHC
- Iron
 - Sources and Sinks
 - Data
- Conclusions

TCE-related LOF (all media)



Siltronic FFS - Alternatives

	Non-Fiscal Balancing Factors		Cost		All Categories	
Alternative	Sum	Average Score	Estimated Cost (\$ Million)	Cost Score	Total	Total Average
Alternative 1: No action	7.5	1.88	0	0.0	8	1.5
Alternative 2: Source Area Treatment, Natural Attenuation for Downgradient Plume/Area 1	11.0	2.75	\$5.8M	4.0	15	3.0
Alternative 3: Source Area Treatment & Riverbank PRB at Top of Slope	14.0	3.50	\$9.4M	3.0	17	3.4
Alternative 4: Source Area Treatment & Riverbank PRB at Toe of Slope	11.0	2.75	\$12.8M	2.0	13	2.6
Alternative 5: Source Area Treatment Groundwater Extraction at Riverbank	9.0	2.25	\$15.3M	1.0	10	2.0
Alternative 6: Groundwater Extraction at Riverbank Only	8.0	2.00	\$9.5M	3.5	12	2.3



Siltronic FFS Riverbank Injection

NWN FFS

Recommended Alternative

Source Area WS-18-101 WS-19-71 WS-19-101 WS-13-69/105

Layout

Riverbank Layout

Primary Results

- Source area objectives
 - Reduced TCE mass in source area by 94-99%
 - Enhanced bio treats potential TCE DNAPL zone
 - Overcame DCE stall significant ethene and chloride production
- Riverbank objective
 - TCE, DCE, VC ND or below SLVs at furthest downgradient well and in PRB

Source Area - CVOCs

Source Area	Concentration (ug/L)					Percent Reduction
Well	Date	TCE	DCE	VC	CVOCs	Total CVOC
WS-19-71	Jun-06	6,500	89,010	30	95,540	-
(within PRB)	Feb-08	ND	120	10,500	10,620	88.9%
WS-19-101	Jun-06	92,900	39,497	22	132,419	-
(within PRB)	Feb-08	ND	94.3	156	250	99.8%
WS-18-71	Jun-06	7,990	91,624	26	99,640	-
(Downgradient)	Feb-08	102	6,541	16,600	23,243	76.7%
WS-18-101	Jun-06	198,000	34,133	41	232,174	-
(Downgradient)	Feb-08	2,920	97,315	24,900	125,135	46%

Riverbank - CVOCs

Riverbank Area			Concentration (ug/L)			Percent Reduction
Well	Date	TCE	DCE	VC	CVOCs	Total CVOC
Regulatory Screenii	ng Level	3	70	2.4		
WS-22-112	Jun-06	584	3,074	474	4,132	-
(within PRB)	Feb-08	ND	ND	ND	ND	99.99%
WS-11-125	May-06	22.9	10,557	2,490	13,069	-
(Downgradient, with MGP DNAPL)	Feb-08	ND	80	16.4	96.4	99.3%
WS-20-112	Jun-06	1,100	10,067	1,610	12,777	-
(Downgradient)	Feb-08	ND	0.73	ND	0.73	99.99%

FFS Recommendations

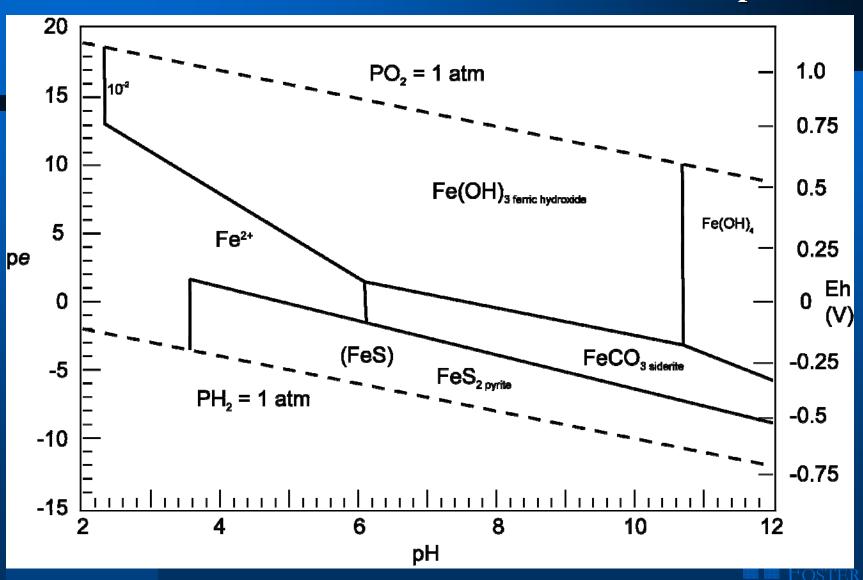
- Alternative 3
 - EIB at source and riverbank
 - Potential to treat Area 1 TZW
 - Sustainable/low footprint remedy
 - Not selected by DEQ
- Alternative 2
 - EIB at source
 - Coordination with NWN P&T
 - Natural attenuation for Area 1 TZW
 - Selected by DEQ

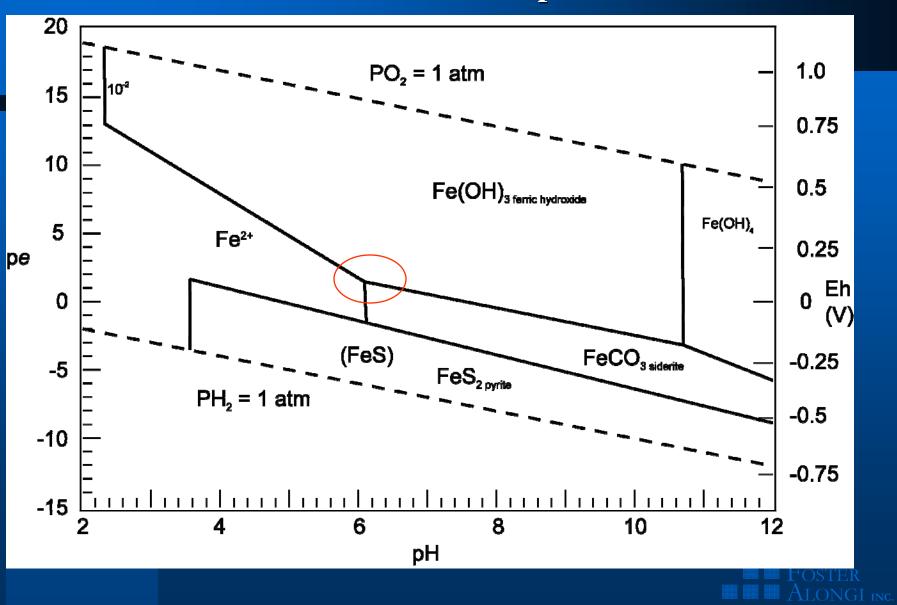
DEQ Basis for Selecting Alternative 2

- Iron from EIB PRB at Riverbank
 - Might create iron precipitates
 - Formation of ferric hydroxide
 - Interference with extraction system
 - Might result in downgradient impacts
 - Elevated iron in groundwater/TZW
- Jurisdiction
 - Benefits related to Area 1 under EPA oversight

Iron Sources

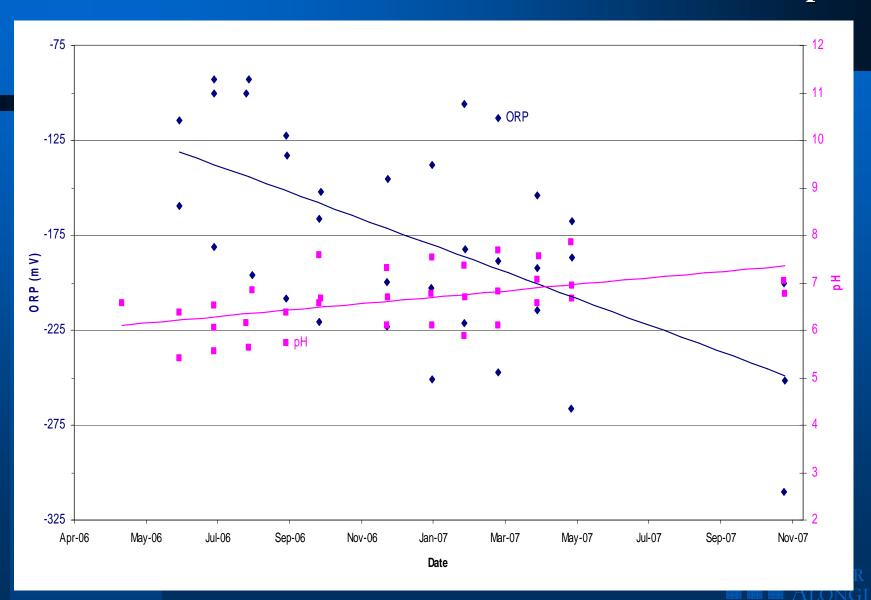
- Spent Oxide
 - Strong correlation with depth (-0.92)
 - Site "background" ranges from ~37 to 46 mg/L
 - As high as 465 mg/L Gasco
 - Source of elevated sulfate, cyanide
- Organic-enhanced solubility
 - Iron chelated by oxidized organics from MGP waste
- MGP DNAPL
 - -50 100 mg/kg
 - Upland and riverbank wells
- Iron-cyanide complexes

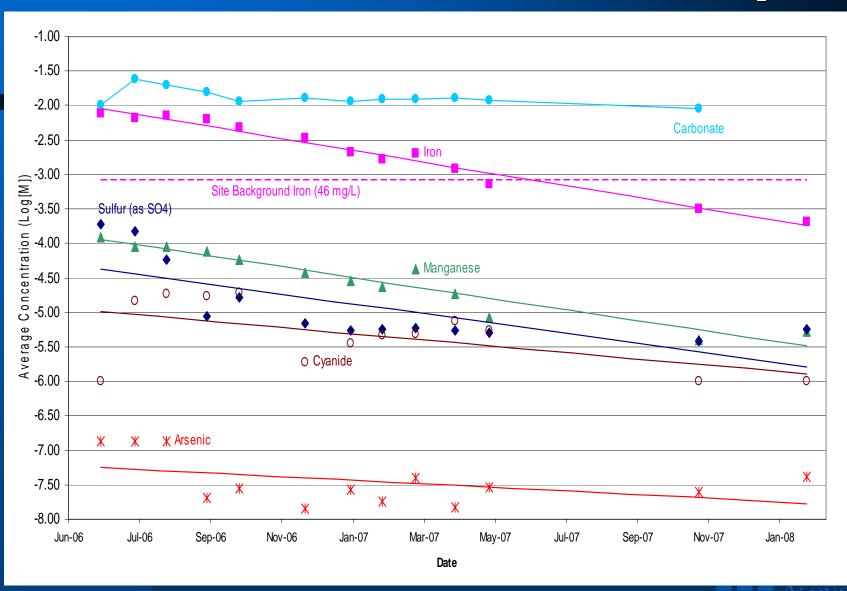



Iron Sinks

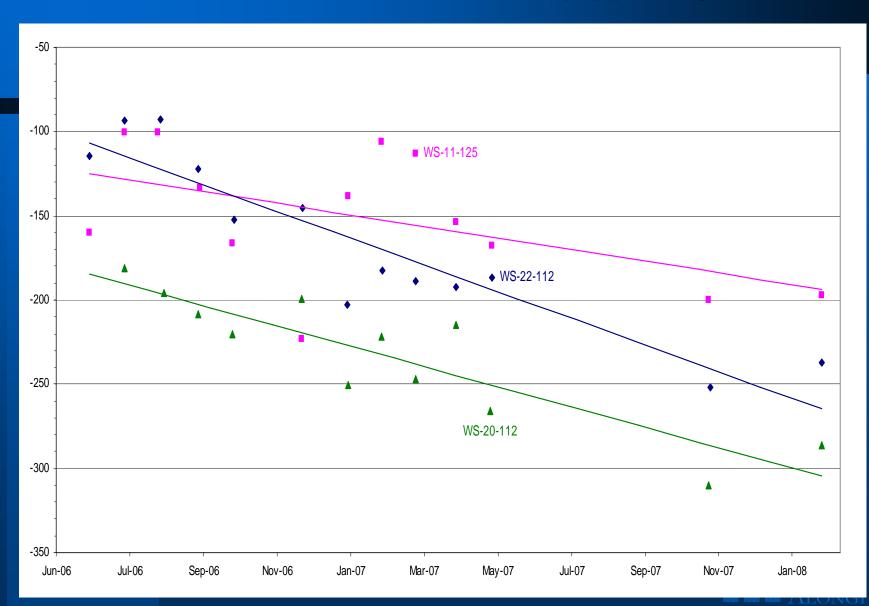
- Reactions in Low ORP Zone
 - Formation of ferrous carbonates, sulfides
 - Thermodynamically stable precipitation
- Confirmation with modeling
 - PHREEQC model confirms supersaturation for siderite (FeCO₃)
- Reactions Further Downgradient
 - Formation of ferric hydroxides

Riverbank - Iron Precipitation


Riverbank – Iron Precipitation – without EIB


Riverbank – Iron Precipitation – with EIB

Riverbank – ORP vs pH


Riverbank – Reactive Species

Riverbank Zone - Iron

Riverbank – ORP Detail

Conclusions

- Site background concentrations of iron in groundwater are elevated as a result of MGP waste.
- This iron is primarily present as ferrocyanide / ferricyanide anions and as Fe⁺² cations, with enhanced solubility due to MGP-related organics.
- Enhanced reducing conditions resulting from implementation of an EIB PRB decrease the concentrations of iron (and manganese, sulfate, and cyanide) through formation of stable precipitates.
- Dissolved iron in groundwater is converted to stable solid minerals.

Conclusions

- Elevated iron concentrations from implementation of an EIB PRB are temporary and reduced to below background levels through formation of stable precipitates.
- Pathway analysis confirmed by geochemical model.
- Geochemical model confirmed by field data.

